Article 15320

Title of the article

SOFTWARE IMPLEMENTATION OF SOLVING BY POTENTIAL-STREAMING
METHOD THE PROBLEMS OF CONSTRUCTION OF SYSTEM MODELS FROM TEST RESULTS OF THESE SYSTEMS 

Authors

Starostin Igor' Evgen'evich, candidate of technical sciences, associate professor,  sub-department of electrical engineering and aviation electrical equipment, Moscow State Technical University of Civil Aviation (20 Kronshtadtsky Boulevard, Moscow, Russia), starostinigo@yandex.ru

Index UDK

62-97/-98 

DOI

10.21685/2307-4205-2020-3-15 

Abstract

Background. When designing and creating technical facilities, in particular components of aviation systems, the question arises of the reliability and quality of their operation. Ways to improve the reliability and quality of operation of systems are: diagnostics and forecasting, as well as the management of these objects. To solve the described problems, a mathematical model of the studied technical object is required, which the author obtains from the analysis of physical and chemical processes by the potential-streaming method and from the results of testing these systems. The complexity of the described actions necessitates their software implementation, generally distributed (if the dimension of the system is large). The aim of this work is to develop methods for the software implementation of the construction of mathematical models of technical objects from potentialstreaming equations of processes in them and the results of testing these objects.
Materials and methods. The potential- streaming method was implemented by the author using model-oriented design (modelica standard). The software implements the calculation of various dynamics of physicochemical processes at various parameters of potential-streaming equations with further approximation on the set of these possible dynamics of the formal model in their given class. Experimental studies of the formal parameters of these models with the further construction of models (from formal models) are carried out by statistical methods.
Results. Based on the described methods, the present paper presents the structure of the software implementation of the methods for constructing mathematical models of systems from the analysis of physical and chemical processes in them and the test results of these systems.
Conclusions. The results of the work make it possible to create a hardware-software complex that allows one to build formal mathematical models from a user- defined structure of physicochemical processes in a technical object, and then build mathematical models of these systems from available experimental data (in particular, collected by this complex). Because in the general case, this complex is a horizontally scalable computing cluster, this makes it possible to build the described models of systems of arbitrary complexity.

Key words

technical objects, reliability and quality of operation, potential-streaming method, mathematical modeling. 

 Download PDF
References

1. Starostin I. E., Stepankin A. G., Tyulyaev M. L., Lavrov V. V. Nauchnye chteniya po aviatsii, posvyashchennye pamyati N. E. Zhukovskogo: sb. tr. XIV Vseros. nauch.-tekhn. konf. [Scientific readings on aviation dedicated to the memory of N. E. Zhukovsky: proceedings of the XIV all-Russian scientific and technical conference]. Moscow: Eksperimental'naya masterskaya «NaukaSoft», 2017, pp. 498–508. [In Russian]
2. Kolodezhnyy L. P., Chernodarov A. V. Nadezhnost' i tekhnicheskaya diagnostika: uchebnik dlya vuzov [Reliability and technical diagnostics: textbook for Universities]. Moscow: VUNTs VVS VVA im. N. E. Zhukovskogo i Yu. A. Gagarina, 2010, 452 p. [In Russian]
3. Bessekerskiy V. A., Popov E. P. Teoriya sistem avtomaticheskogo upravleniya: uchebnik [Theory of automatic control systems: textbook]. Saint-Petersburg: Professiya, 2003, 752 p. [In Russian]
4. Krut'ko P. D. Obratnye zadachi dinamiki v teorii avtomaticheskogo upravleniya: tsikl lektsiy [Inverse problems of dynamics in automatic control theory: a series of lectures]. Moscow: Mashinostroenie, 2004, 576 p. [In Russian]
5. Khar'kov V. P. Trudy Mezhdunarodnogo simpoziuma Nadezhnost' i kachestvo [Proceedings of the International Symposium Reliability and Quality]. 2016, vol. 1, pp. 176–177. [In Russian]
6. Starostin I. E., Khaluytin S. P. Civil Aviation High Technologies. 2020, vol. 23 (2), pp. 47–58.
7. Starostin I. E. Nadezhnost' i kachestvo slozhnykh system [Reliability and quality of complex systems]. 2020, no. 1 (29), pp. 6–13. [In Russian]
8. Starostin I. E. Nauchnye gorizonty [Scientific horizons]. 2019, no. 11 (27), pp. 214–230. [In Russian]
9. Etkin V. A. Energodinamika: sintez teoriy perenosa i preobrazovaniya energii: monografiya [Energy dynamics: synthesis of energy transfer and transformation theories: monograph]. Saint-Petersburg: Nauka, 2008, 409 p. [In Russian]
10. Jou D., Casas-Vázquez J., Lebon G. Extended irreversible thermodynamics. New York, USA: Springer, 2006, 528 p.
11. Polak L. S. Neravnovesnaya khimicheskaya kinetika i ee primenenie: monografiya [Non-equilibrium chemical kinetics and its application : a monograph]. Moscow: Nauka, 1979, 248 p. [In Russian]
12. Starostin I. E., Bykov V. I. Kinetic theorem of modern non-equilibrim thermodynamic: monograph. Raleigh (Noth Caroline, USA): Open Science Publishing, 2017, 229 p.
13. Starostin I. E., Stepankin A. G. Programmnaya realizatsiya metodov sovremennoy neravnovesnoy termodinamiki i sistema simulyatsii fiziko-khimicheskikh protsessov SimulationNonEqProcSS v.0.1.0: monografiya [Software implementation of methods of modern non-equilibrium thermodynamics and a system for simulating physical and chemical processes SimulationNonEqProcSS V. 0. 1. 0: monograph]. Bo Bassen, Mavrikiy: Lambert academic publishing, 2019, 127 p. [In Russian]
14. Starostin I. E. Komp'yuternye issledovaniya i modelirovanie [Computer research and modeling]. 2014, vol. 6, no. 4, pp. 479–493. [In Russian]
15. Starostin I. E., Khalyutin S. P., Bykov V. I. Slozhnye sistemy [Complex system]. 2019, no. 3 (32), pp. 82–97. [In Russian]
16. Starostin I. E. Innovatsionnye informatsionnye i kommunikatsionnye tekhnologii: materialy XVI Mezhdunar. nauch.- prakt. konf. [Innovative information and communication technologies: proceedings of the XVI international conference. scientific-practical conf.]. Moscow: Assotsiatsiya vypusknikov i sotrudnikov VVIA im. prof. N. E. Zhukovskogo, 2019, pp. 317–322. [In Russian]
17. Starostin I. E. Trudy Mezhdunarodnogo simpoziuma Nadezhnost' i kachestvo [Proceedings of the International Symposium Reliability and Quality]. 2020, vol. 1, pp. 41–44. [In Russian]
18. Voevodin V. V., Voevodin Vl. V. Parallel'nye vychisleniya: ucheb. posobie [Parallel computing: tutorial]. Saint- Petersburg: BKhV-Peterburg, 2002, 608 p. [In Russian]
19. Sansone Dzh. Obyknovennye differentsial'nye uravneniya: monografiya [Ordinary differential equations: monograph]. Moscow: Izd-vo inostrannoy literatury, 1953, 346 p. [In Russian]
20. Kalitkin N. N. Chislennye metody: uchebnik dlya vuzov [Numerical methods: textbook for Universities]. Saint- Petersburg: BKhV-Peterburg, 2011, 592 p. [In Russian]

 

Дата создания: 24.11.2020 14:48
Дата обновления: 25.11.2020 10:22